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ABSTRACT

This thesis will examine the equations of motion for a
spinning ballistic projectile. The goal of such an
examination is to determine the possible mechanisms by which
a directed energy weapon may induce sufficient instability as
to significantly alter the projectile’s flight path. A
ballistic projectile is generally launched with a "fire and
forget" philosophy. The desired impact point is determined
before firing. It may be possible to alter the projectile in
such a way that it fails to follow the desired trajectory
thereby missing the intended target. Several variables appear
to be worthy of investigation to assess their contribution to
a required instability or range reduction. Skin friction drag

may be increased from surface roughness generated by a pulsed

energy source. The results that this thesis will examine
include: impulse generated by the laser interaction,
additional Magnus effects and aerodynamic drag. Moment

induced instability may also result from these in the form of
a Magnus moment or drag torque. Increasing the drag force
appears to be the most promising theoretical solution to

defeating an incoming spinning ballistic projectile.
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TABLE OF VALUES

Cgq specific heat of steel 0.15 cal/gr-C
d 155mm projectile diameter .155 m

g acceleration due to gravity 9.8 m/sec2
Ka spin decelerating coefficient .08

Kp drag force coefficient .004

Ky damping moment coefficient 1.2

Kr, lift force qoefficient 1.0

Ky over turning moment coeff. 2.5

Ky normal force coefficient 1.3

Kp Magnus moment coefficient 0.3

L 155mm projectile length 70 cm

Ly latent heat of melting 65 cal/gr
m 155mm projectile mass 45 kg

Ty melting temperature of steel 1450 C

U wind speed over the projectile 600 m/s

Ug speed of sound in air 350 m/s

v speed of the projectile 600 m/s

() 155mm projectile spin frequency 220 hz
Pair standard density of air 1.2 gr/cm’
Psteel density of steel 8 gr/cm3

* Many of these terms are approximations based on diagrams and
conversations with aerodynamics researchers at the Army Research
Laboratory in Aberdeen, Maryland. The exactness of these values is
not significant to the magnitude estimations in this thesis.
Additional special case values will be introduced in the text.




I. INTRODUCTION

This thesis is directed toward solving a stated goal of the
Defense Planning Guide. Our current armed forces are vulnerable to
gunfire attack due to an antigquated counterbattery gsystem of
equipment and technique. Specifically, in today’s battlefield,
surgical precision is required and may involve protecting civilian
lives in a confined suburban environment. There is a need to
develop a new system using state of the art technology to destroy
incoming projectiles minimizing loss of life. Laser technology has
given us the ability to track, classify and engage incoming
ballistic rounds to meet this goal. This thesis will explore the
use of laser energy to accomplish the defeat of the projectile.

This mission responds to the Department of Defense "Defense
Planning Guidance (DPG) for FY 1996-2001" dated 23 May 1994. This
involves countering armor, mortar and mobile artillery threats to
U.S. forces conducting an amphibious invasion, U.S. forces
defending a coastal region from invasion and to coastal cities and
safe zones under U.S. protection during peace keeping operations.
There are several specific guidelines in the DPG:

"U.S. and coalition forces would have several key objectives in a peace
enforcement or smaller-scale operation, each of which would require certain
capabilities:... Establishing and defending zones in which civilians are

protected from external attacks."

"The first priority in defending against a large-scale attack will most

often be to neutralize the enemy’s offensive capabilities."

"U.S. military capabilities will be configured to achieve required

objectives while minimizing American casualties."




A. DEFEATING THE LAUNCHER BEFORE PROJECTILE IS A THREAT

There exists a need for a Counter-Battery Weapons System
(CBWS) to neutralize the enemy’s ability to launch large caliber
ballistic projectiles at U.S. forces and civilians under U.S.
protection. The CBWS needs to be able to determine the launchers
position from one in-coming round and surgically destroy that round
in as rapid a manner as possible. A secondary purpose that this
thesis will not address is eliminating the launcher based on cuing
information from the primary system.

The Combat Systems Science and Technology Curriculum at the
Naval Postgraduate School has a course sequence designed to solve
these kinds of problems and propose system solutions. The class of
June 1995, examined the problem solution of defeating projectile by
preventing the launch. The class considered this problem to be
tshooting the archer" as opposed to "“shooting the arrow." A
complicated and expensive proposal was developed using acoustic and
electromagnetic sensors to detect an initial firing and then a
guided projectile to destroy the launcher and nearby personnel

B. DEFEATING THE INCOMING PROJECTILE

This weapon system should have an integrated, multi-unit and
autonomous capability to designate the target and automatically
engage the threat using a laser tracking beam and a higher power
laser destruction beam. Countering the threat from armor, mortars
and mobile artillery, the system must be able to respond against
projectiles ingressing at up to three km/s from a range of up to
120 km. The response time for incoming projectile detection
through battle force threat warning and counterbattery action must
therefore be less than 45 seconds. The system should be capable of
distinguishing friendly fire from enemy fire through command
functions and will also be able to project the most probable impact
point of the in-coming round to determine if impact could cause




major damage to friendly forces and to provide warning of imminent
danger to ground forces. Projectiles that pose no threat will not
be engaged. The initial goal of the CBWS will be to achieve a hard
kill of the projectile.

Modern weapon R&D 1s producing long range over-the-horizon
(OTH), high caliber ballistic weapons systems which are small
enough to be highly mobile. These weapons systems are being
deployed in areas which are becoming an important part of the U.S.
military strategy in which Naval forces are being used to support
ground forces. The shift from emphasis on open ocean warfighting
to the littoral environment as outlined in “"Forward...From the Sea"
will increasingly place forces at sea within range of these weapons
systems. Working with the Marine Corps and their Operational
Maneuver From the Sea (OMFTS) warfighting doctrine will require
support in various roles. These include: suppression of enemy
gunfire, neutralization/denial of enemy operating areas, Naval
Gunfire Support (NGFS), interdiction/neutralization of reinforcing
elements, and evacuation protection. These capabilities will
require execution in day or night, all weather, and OTH scenarios
to counter the threat. Specifically, the threat must be engagable
in an area 100nm wide and 75nm deep (from an offshore range of
25nm) . This must be accomplished with an accuracy of several
meters to minimize collateral damage and fratricide. The purpose
of the laser weapon system is to provide the capability to achieve
these objectives.

Within these requirements, our current inventory of naval
gunfire support (NGFS) weapons is inadequate to counter this
threat. The technological gains made in other Navy systems has
occurred while naval guns have remained virtually unchanged. The
maximum range of our most capable system, the 5" 54-caliber M 45,
falls far short of the desired ranges and accuracies.




C. ALTERNATIVE SYSTEM SOLUTIONS TO DEFEAT THE LAUNCHER

There are few alternatives to developing this system. One
non-material alternative may be to adapt existing counterbattery
systems (Firefinder radar) for use by naval forces. Because the
precision required to surgically neutralize enemy weapon systems
does not presently exist in the Navy’s arsenal, improved tactics
cannot lead to a solution of the stated problem.

Currently, both the Army and the Marine Corps have ballistic
tracking systems in service to locate hostile guns. These again,
fall significantly short of the required accuracy and do not
address the problem of locating and destroying the incoming
projectile. Nevertheless, these systems providing a search
capability wused in conjunction with a more accurate fire
control/targeting system may provide good initial or secondary
gqueuing prior to the terminal phase of the desired weapons system.

Another alternative involves improvements to the Mk 45
projectiles. Several options are being explored including
extending the ranges of the projectiles with advanced conventional
solid propellants such as liquid propellant or electrothermal
chemical propellant. Further improvements to the projectile could
provide a "smart" seeker which would aid in the terminal portion of
the ballistic trajectory. Use of the existing TOMAHAWK cruise
missile as a weapons delivery system would require modifying the
missile to be able to target a point defined by latitude and
longitude vice using predetermined scene maps and an image matching
method. But, again, these systems would do nothing to protect the
forces and civilians from the projectile itself.

D. THE SOLUTION APPROACH OF THIS THESIS
The problem can then be summarized as "how it is possible to

defeat an incoming ballistic round?" The flowchart below describes
the major solution areas and subareas. This thesis is directed



toward solving the problem of deflection/destruction in flight.
Specifically, the question "what can be done to change the
ballistic projectile’s dynamic trajectory?" This is accomplished
by examining the forces that control the dynamics and what forces
may be applied to change the dynamics (Figure 1).

\ Defeat an Incoming Ballistie Projestile i

N

Stop the Launch lDeflect/Destroy B.P, in Flight‘ Stop B.P. with Armor

Where is the B.P.? Where is it Going? What is the B.P.’s Orientation?

! What can
| be done to I~ | What Forces Control the B.P.’s Dynamics?

Change B.P.’s

[ Dynamic ———>! What Forces can be Applied in Addition to
! Regular Forces Acting on the B.P.?
Trajectory?
Ablative Change the Surface
\] Impulse Roughness
Single Pulsge Multiple Pulses Drag Yaw Torque Magnus Effects

Figure 1 Defining the problem is the first step in determining
possible solutions to defeating an incoming ballistic projectile.
The solution of providing armor to defeat the round is
considered elementary and could be considered as limiting the scope
of the other solutions to larger caliber rounds such as the
155mm. The ability to defeat an incoming round in flight, and
ultimately the success of the proposed system, is explored through
several theoretical calculations involving laser interaction with
the surface of a projectile. Two main areas of research appeared
promising in the problem solution: ablative impulse and induced

5




surface roughness. The impulse problem was handily dismissed due
to the large energy reguirements. However, the induced surface
roughness may have a significant effect on a ballistic projectile’s
stability and range. This instability desired to deflect the round
is most easily obtained by altering the Magnus moment of the
projectile. This instability, however, proved to be of
insufficient magnitude to defend the projectile’s target. The
additional drag created by the increased surface roughness appears
to be a promising solution.

This thesis estimates the magnitude of effects that could de-
stabilize or reduce the range of a projectile in flight. Most
previous work on exterior ballistics has focused on the means for
achieving stable flight and maximum aerodynamic efficiency. The
magnitude of the effects we seek may demand great pointing accuracy
and other laser CBWS problems may arise. These are not addressed

here.

Figure 2 The motion of a spinning ballistic
projectile.



The 155mm projectile 1s used as a model to conduct these

calculations because it meets the requirements of a medium to long

range artillery threat and is a common weapon in many international

forces. The 155mm projectile has many variations of casing design

and explosive warheads that are used. The most common projectile

is the 155mm HE M107 which is used as a general purpose round by

the United States and most other countries that fire the 155mm

ballistic projectile. The HE M107 round weighs 95 pounds and is

27.5 inches long. The casing is composed of a medium carbon 4340

steel (a carbon, nickel, monel alloy) that varies in thickness from

.25 to .75 inches at the nose.

/
]

'
t

trajectory \

Figure 3 An exaggerated description of the increasing angle of

the projectile with respect to the trajectory along the
trajectory.




As the projectile travels through the air, it spins at a
frequency of 220-250 hz. The spin is imparted by rifling within
the bore of the launcher. A variation in the spin rate is due to
the differing charges that may be used to fire the projectile. A
typical exit velocity of 600 meters/second will be used throughout
the calculations. In addition to spin, the ballistic projectile
also undergoes a coning motion about the axis of flight with an
origin near the center of mass(18.1 inches from the nose tip). The
angle of this coning motion 1s typically 3-5 degrees as the
projectile is reaching its apex and then increasing somewhat as the
arc of trajectory curves downward toward the target. The coning
rate is between 5 and 20 hz.

Ultimately, the system can only be successful 1if the
theoretical results <can be  further refined and tested
experimentally to verify expected system performance. The purpose
of this writing is to find possible theoretical means of using
laser energy in a CBWS to achieve the national goals stated in the
DPG. Specific details of system design will not be addressed.

The thesis will present arguments for five possible mechanisms
of achieving a "kill" of the projectile. All of these "kills" will
be achieved by deflecting vice destroying the projectile. The
first theoretical method discussed to defeat the projectile will be
momentum transfer by directed energy impulse. A more complex
argument discusses the stability equation for a spinning projectile
and addresses the most likely component, the Magnus effect, in
relation to achieving instability. Finally, increased aerodynamicC
drag is examined as the most likely means to achieve a successful

engagement against an incoming spinning ballistic projectile.




II. IMPULSE DELIVERED BY LASER INTERACTION
A. LASER EQUATIONS AND IMPULSE THEORY

Before examining any calculations of ablative impulse, it is
necessary to introduce the eqguations which will be used. The
equations that will be used were developed in class notes used at
the Naval Postgraduate School for various courses examining
directed energy capabilities (Schriempf, 1974). The terms that
will be used are defined below:

Fo= (1L-®) I | The laser power density absorbed where ® is the
Reflectance, I is the laser power density arriving
at the surface and Fq is the power transmitted
through the surface per unit area.

tp The pulse length (duration).

Dp The thermal diffusion length is the distance
required for the temperature to drop 1/e of the
surface value.

P The material density.

Ty The initial temperature.

Th The melting temperature.

TV» The vaporization temperature.

Cgr C1 - The specific heat of the solid, liquid.

Ly Ly The latent heat of melting, vaporization.




Ty, The boiling temperature.

°| =

The thermal diffusivity is equal to the product of

the thermal conductivity and the specific heat

divided by the density.

The criterion for vaporization of a diffusion thickness igs
given by:

T
FOBBZP[CS(Tm_TO)+Lm+cl(rb_Tm)+Lﬂ' (2.1)

ke

When numerical values are inserted, the L, term dominates the

equation simplifying to the form:

Fo

|

xpL.,. (2.2)

since, Dp=2y/(kt,), this then becomes:

/K
For2-Y—L,p

X (2.3)
o

Solving this equation for the pulse length gives:

2

L
v 2 (2.4)
Tp> 4Kk — p°.

Fo

Now to solve the specific impulse on a target will require
several assumptions before this can be carried any further.
1) The beam radius, R,

is much larger than the diffusion
length.

2) The target is very thick compared to the diffusion length.
3) The melting will be ignored.
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The time for the surface to reach vaporization temperature is:

i (2.5)
Tb'—'szp CS

'11|~ﬂ
ownisg N

The surface erosion speed 1is taken from equation 2.1
substituting Az for the diffusion length. This represents the
thickness of the material evaporated during a time At. The

erosion speed is then expressed as:

U =——AZ=—F°1/[C (T ~T ) +C o (T..~T.) +L_] (2.6)
s At p stim Lo/ *Cptty Iy Tyl
Fo
Since Ly<Ly i C2Cg=C, then Us”Tl/ [LV+CTV] . (2.7)

The vapor Dblow-off speed is derived from the momentum

conservation, pU,=pgUg, resulting in:

PyU,=Fo/ (L, +CT,) .

The associated pressure with the blow-off is then:

2 .
P=p,U,= pvl—i (gas constant/molecular weight) T, so, U,= —\/——‘/}E /Tv
M
and combihing this with equation 2.8 results in:
P=F VR T,/ (L,+CT.,) = F_J/C[T./[/3(L,+*CT.)]
= oﬁ\/ v/ \eythliyl # o\/—\/ v/ W3 (Ly*CTy, (2.9)

. R
since C= 33—4 for most metals.

Now, the specific impulse delivered during an energy pulse is:

11




Ip=P (tp=Tp) - (2.10)

Substituting equations 2.5 and 2.9 into 2.10 and using typical

values results in a simplified form:

T
2.11
I =8E,{(1-6 p), thm)mmshmz] ( )
2
Eo
where E, is the pulse energy per unit area (fluence)

= FoTp: Tp units are Ps.

This equation will generally result in agreement with
experimental data within a factor of two. This is sufficient for
the estimates of this thesis. If the results of further
calculations indicate a possible effect within a factor of two from
current technology, then better estimates would be in order.

One additional aspect of laser theory should be addressed
here. If the E, is very large, the delivered impulse will fall off
with increasing values of E,. This is due to the absorption of
laser energy within the vapor near the surface of the target. At
some value of power density, the plume of vaporized material blow-
off from the target will become hot enough that the surrounding air
or vapor are sufficiently ionized to absorb large amounts of the
laser radiation. This phenomenon is called laser absorption.

Another problem is called beam decoupling. When the laser
beam electron density increases to a value where the plasma
frequency is larger than the laser frequency, then the light
interaction with the free electrons dominates. The laser is cut-
off from the surface.

Wwith these in mind, it is important to find the critical
energy density at which these processes occur. The upper limit
density is about 1023 electrons per cubic cm electron density where
the material reaches a temperature of full ionization. But, this
is not accurate enough since the ionization degree 1is very

12




sensitive to the temperature. Figure 4 shows the predictions for
the impulse as a function of the pulse energy (Nielsen, 1972).
These values will be used later in the calculations for ablative

impulse.

OTl,tp * '02 Hus
.ti,to ' ”00,.‘.8

0k ANISIMOV Pneouck e

tpﬂ.?. B
N

LBRLRRRLL

1

R RRALL

-é- ( dyne -s/j)

1}

L SD PREDICTIONS

ANISIMOV PREDICTION
tp s | K

/

LILBLRLRAAL

Ee*STVIZ s
€, 57TVIT us

o1 ST T WY ll 'IWRTIT M EEITY)
[ 10! 102 103
E(}/em2)

Figure 4 Specific impulse delivered to solid targets by 1.06
micron laser radiation (Nielsen, 1972).
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B. ABLATIVE IMPULSE CALCULATIONS

1. Single Pulse Impulse

The impulse calculations are examined first since this would
be the easiest and most direct method of deflecting an incoming
round. A Laser induced ablation from a single pulse would be the
preferred method of destruction if it were physically possible.
This would require a less sophisticated system that could "fire and
forget." The problem is complicated when a system is required to
accurately track and reengage a target multiple times. This
requirement also detracts from the ability to rapidly engage the
next subsequent target in a dense battlefield. With this in mind,
and using the equations for critical energy of a laser system, it
is possible to determine the feasibility of the single pulse

system.
P_L
Pgp
0
i
A =10 sz
momentum components: PR resultant

p N perpendicular
P| parallel

Figure 5 Impulse transferred by a single laser pulse.
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To further simplify the initial calculation, a perpendicular
impulse will be assumed. If the required energy is at physically
attainable levels, then further calculations for reduced angle
impulse will be in order.

The impulse transferred by ablation is found by equation 2.12
to be proportional to E, for tp<l0ps and Eo>20J’/cm2 when the term
in the bracket becomes small compared to one:

(2.12)

The impulse 1is calculated from the change in momentum required

where the momentum of the moving projectile is,

9 (2.13)
p=mv=1.8x10"gcm/s.

For a single pulse sgystem, a shipboard close-in defense would
require a deflection on the order of 50 meters for every 1000
meters traveled by the projectile. The result would be a .05 rad
change in direction or a change in momentum of

(2.14)
(Ap) =.05(1.8x109)=108gcm/s.
reqd

Then, the impulse transferred in a 10 square cm area to the
projectile is estimated by:

(Im)reqd' ——ii——=107dyns/cm2

Finally, referring to equation 2.12, the energy fluence required
will be 106J'/cm2 with a pulse duration of 10 ® seconds Presently,
this is not within the realm of possibilities for current laser

15




systems. Therefore, further calculations of reduced angle impulse
are not required. However, there is another way to examine the
problem. It may not be a close-in defense system that is engaging
the target projectile. Without placing any limitations on the
amount of deflection required for a given length of travel, a
calculation may be conducted for a change of yaw angle. A
significant change of yaw angle of about 10-20 degrees would change
the drag significantly and alter the range of the projectile.
Using a spinning top approach and a small angle change, a first
approximation again rules out the possibility of sufficient energy
for a single pulse.

From Figure 4, values of Energy 30LLhmn2 and I/E of 5 dyn s/J
show that an impulse of 150cbnls/cm2 could be attained.

To determine the required impulse, one finds the required
torque from the required change in angular momentum in the
following steps:

the torque, T=Fa, (2.16)
. . - 1 2
the moment of inertia, I = —Z—MR , (2.17)
and the angular momentum, L = fo = Iw'A (2.18)
drC
so that, — =T. 2.19
dt ( )

a=0.3m

Figure 6a The torque applied. Figure 6b A change in angle.

16




Therefore, the torque can be expressed as:

di _ di _ de _
45t ° Iw% = ;rm-cE = Fa. (2.20)

I.mp = i = ——At—'—— = E'Aa. (2.21)

pzeq

with the result of 30
MW . This is an energy fluence far beyond the laser absorption

Using the values from Figure 4, E_., =

threshold and is an implausible solution with current technology.

2. Multiple Pulse Impulse

This leaves the less desirable option of impulse delivered by
multiple pulses to be examined. Using the results of equation
2.21, the total energy required must be divided into optimal energy

Jz, then 10° pulses are required. Using 10 ps
cm
pulses at optimal energy, it 1is possible to determine how much

pulses. It E,. =30

engagement time 1s possible as the projectile cones. The
engagement time is estimated by the following using a coning rate
of 5 Hz:

!
mc=2€Hz also V=R_W_=atane ®_. (2.22)

17




a=0.3m

Figure 7 Estimating the angle.

With the established coning rate and angular velocity, an
engagement can only be achieved within a period of .06 seconds.
applying these pulses over the engagement time for a 1 ns pulse
results in a power requirement of 6x1010 Watts which is still well
outside of an expected capability.

The impulse calculations demonstrate that it is currently not
possible to achieve a "kill" on a ballistic projectile with the
ablation energy transfer alone. The next step is to determine how
the stability may be affected by changing the aerodynamic forces
acting on the projectile.
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ITII. STABILITY

There are several topics that should be explored before
beginning the calculations to prove or disprove that a viable CBWS
can cause instability. Most importantly, a sound understanding of
spinning projectile stability theory is established as a framework.
Then, using the stability as a guideline, one term (the Magnus
moment) 1in the final stability equation appears to be most
promising for further analysis in causing instability. The Magnus
force and ultimately Magnus moment must be defined and discussed to
determine whether these components are worthy of further
calculations to support an instability argument.

The conditions for stability of a spinning ballistic
projectile are given by McShane et al. The following discussion is
a summary of the results of this analysis with the details given in
Appendix A.

A. THE EQUATIONS OF MOTION

The focus of this analysis is the derivation of the equation
of motion of the yawing motion due to the various aerodynamic
forces acting on the projectile. The velocity vector, d, of the
projectile with respect to the ground can be decomposed into a
component along the projectile axis of symmetry, u;, and a complex
component, E = u2+iu3, where u, and u; are the velocity components
perpendicular to the projectile axis in a coordinate system fixed
to the projectile. The tangential velocity of the center of mass
is U. The ratio, = is the "vector of yaw" which has the
magnitude of sind. A new variable is defined as:
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Figure 8 The "vector of yaw."

where P is the arclength along the trajectory in calibers and v is
the spin rate per caliber of travel. The yawing equation of motion
derived in Appendix A is a second order inhomogeneous differential
equation for the quantity, A.

The solutions to the homogeneous equation are given as
exponential functions in P as:

1p -2 md? -2 md? .
o 3 ]o‘ [(Ty-Tymk 20,40, TV £ (Fy=Tpk 720y - (20,-0,) =3-) /a+ivA(120) /B) dp
e

A=l 2
g

(3.2)

’

where the integrand is a function of the relevant aerodynamic force
coefficients. The yawing motion is then given by the superposition
of the two solutions of the homogeneous equation plus a particular
solution of the inhomogeneous equation:

A= Lyhy + Lyhy + Ap, (3.3)

The coefficients Lq, Ly would be determined by the initial yaw and
rate of yaw on the trajectory.
The projectile is stable along the trajectory if the solutions
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Al and Az decrease in magnitude so that in the limit of long
trajectory, only the particular solution remains. This means that
A 1s independent of the initial conditions. The particular
solution need not be small however. For large spin, the rate of
precession and the direction of its axis changes only slowly. As
the trajectory curves, the yaw for a stable projectile can still be
significant. In fact, the projectile becomes more stable along the
trajectory as the velocity of the projectile slows at a greater
rate than the spin.

In reality, the yaw will be small if the projectile is stable
and the solution of the particular integral is small; this is
almost always the case unless high-angle fire is used, then the
particular solution may not be small.

The analysis of stability of the yaw motion concentrates then
on the two solutions A; and A, which can be written in the form:

P
1 r’

where a,, a,, r are functions of the aerodynamic coefficients
(defined 1in Appendix A) and the spin rate which is not time
independent along the trajectory.

One can see that the yaw will decrease if and only if the real
part of the first bracket under the integral is negative and in
absolute value greater than the real part of the second.

In the following, we will summarize this analysis with the
thought in mind to determine which of the aerodynamic coefficients
must be changed by laser action, for instance, and by what
magnitude in order to destabilize the projectile.
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B. THE STABILITY EQUATIONS

The purpose of this section can be achieved now by defining
the terms of stability which are derived more thoroughly in the
appendix. The stability factor S and the stability terms are

usually expressed as:

2, =2
L _ 4Bk Cay
S szz
2
md
Sl - JN+k"2JH_JD—JA_—A_—'
(3.5)
2
md
Sz = 2JN—2JD_2JT—A-, and
2
_ -2 md

The conditions for stability are expressed as the
inequalities:
1, 5253
S 2
S1

and S, > 0. (3.6)

It is worth noting that the spin term, v, appears only on one side
of the inequality. This is useful for determining the effect of
varying spin rate on a projectile’s stability.

These inequalities yield the desired framework for comments on
projectile stability. Namely, there are conditions which do not
satisfy the inequalities that are cause for instability. When
either of the terms of equation 3.6 become negative, the conditions
for stability are violated. These are the conditions for

exploitation in the calculations. It becomes clear in analysis
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(see the discussion at the end of Appendix A) that the only term
which can be reasonable exploited to cause instability without
catastrophic damage to the entire projectile is the Magnus moment
term, Jop. This is true because this term has a polarizing effect
on the first condition of 3.6. Since this term contains opposite
signs in each term of the numerator, then it will have an effect in
opposite directions of the over-all stability. Further, Dbecause
the Magnus coefficient can either be positive or negative depending
on its relation to the center of mass location, it can change signs
within each term (but, change them both in opposite directions
simultaneously) .

The drag term also appears capable of causing a change in the
stability term, Sy, since 1t is of the same order of magnitude as
the Magnus term. However, the Jy term contains the drag
coefficient as well. So a change in the drag will result in a
corresponding change in I nullifying any effect it would have on
the stability. In examining equations 3.5, it can be seen that
increasing the drag will cancel out a similar increase in Jy.
Applying any change in the drag term to either the denominator or
the numerator of equation 3.6 will result in similar cancelling of
the effect. This leaves the Magnus term as the only term that can
be altered in such a way to violate the stability criteria
expressed in equation 3.6.

C. THE MAGNUS FORCE AND MAGNUS MOMENT

The Magnus moment is the most likely component of stability to
be exploited. By increasing the Magnus effect sufficiently, one
can cause instability. Before making the argument for instability,
it is appropriate at this point to discuss the Magnus force and
Magnus moment.
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First, the coordinate system of the projectile should be
established. The vector components of this system will be used to
define the Magnus terms. A ground-based, right-handed coordinate
system will be used with a center of mass of the rigid projectile
serving as the origin.

3
Figure 9 The coordinate system.

The projectile is considered a solid body of revolution.
Along the axis of rotational symmetry, a unit vector & is chosen
positive in the direction toward the nose from the center of mass.
Therefore the total angular momentum of the body can be expressed
as the sum of:

1) the angular momentum about X
and the

2) total angular momentum about an axis perpendicular to X.
Both vectors are in the ground-fixed coordinate system.

The sum of all the forces and moments will determine the
position of the projectile. For this discussion, however, only the
notation that is necessary to understand the Magnus contributions
will be introduced including several additional variables that
provide an understanding of this effect.

For the angular momentum about X, the magnitude of the product
AN, where A is the moment of inertia of the body about X, and N is

the axial spin (angular velocity with a positive direction of a
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right-handed screw about X expressed in radians per second) result
in the total angular momentum represented by the vector ANX.

An aerodynamic force or moment (torque) is produced by the
interaction of the rigid body and the fluid of the atmosphere
around it. There are several in addition to the Magnus components
that are considered necessary to form a complete model of
symmetrically spinning projectile behavior. These are outlined in
Appendix A. The drag force will be introduced in more detail in a
later chapter as a model for examining the effect of a roughened
projectile skin on an aerodynamic coefficient.

The Magnus effects on spinning projectiles were first
documented by G. Magnus in the 1800’s. He observed that a spinning
musket shot experienced drift in the direction of spin as if there
were an additional sideforce acting on the projectile. It has been
consistently zrecognized that this effect 1s an important
contribution in determining stability and trajectory of spinning
projectiles, missiles and bombs. Although there has been a great
deal of interest in these effects, there are few studies that
examine these effects in great detail. Because of the complexity
of this effect we will at this stage use the basic principle of the
Magnus force and Magnus moment as outlined below make a simple
estimate of the effect of varying surface roughness. To date,
there have been no models developed to describe the complexities of
an asymmetric flow caused by an asymmetric body, although one paper
addresses the non-linear effects of the Magnus force for large yaw
(Platou, 1956).

It is widely accepted that the Magnus effect is produced
“entirely by viscous effects. An asymmetric boundary layer (around
a symmetric rigid body) is produced by both the spin of the
projectile and its angle of attack. Most of the research to date
has examined bodies with low angles of attack and very smooth
sur faces. A simple illustration shows the asymmetric boundary
layer and the resulting forces for the low angle of attack.

25




\
|

higher velocity = lower pressure on top

PN “—
4 - N
/ \
/ v \ A —
/ \6 s \
- | | U crossflow
T \ ! ‘.t
N /
\ /
o _— e A —

<

Figure 10 Side and front view of projectile with wind.

In Figure 10, we consider a cross section through the
projectile with its plane spanned by the trajectory and the
direction given by f x 2, where € is the vector along the
trajectory. The bottom view represents the projectile cross
section in this plane with a boundary layer and the cross velocity
component of the wind as it adds or subtracts to the boundary layer
velocity due to the projectile spin in this plane.

On the upper portion of the cross section, the fluid flow over
the projectile is parallel to the rotational motion, and on the
lower side they are in opposite directions. On the upper side, the
mean velocity in the boundary layer is larger than on the lower
side. Therefore, the pressure is larger on the lower side and the
effect is a net pressure force acting upward in the Figure. The
projectile is acted upon by a net force to the left when viewed
along the trajectory.

For a large angle of attack (large yaw in excess of 20
degrees), the boundary layer begins to separate and vortices flow
into the outer inviscid flow. The result is an equal and opposite
circulation causing an additional sideforce. Currently three
dimensional models of boundary layer behavior are too difficult for
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Figure 11 Vortices shed due to the Magnus effect and may lead
to additional force component in the Magnus terms (Power, 1974).

theoretical predictions beyond the crudest approximations.

Since the effects on the 155mm projectile are calculable
within a low angle of attack, the further analysis of the three
dimensional boundary layer are not conducted in this work. Such
circulation and vortex shedding may contribute to rapid growth of
instability as precession occurs and should be further investigated
in subsequent work.

For the symmetric body before a laser has induced surface
roughness, the Magnus force can be fairly accurately described.
The Magnus force is the result of the fluid interaction of the air
stream flowing over the boundary layer of a yawed spinning body.
The magnitude of the force is pd3KFNVSin6, where Kp is the
dimensionless coefficient of the Magnus force. The force is
perpendicular to the yaw plane. The Magnus force is represented by
the vector Xx# for positive values of N. The result is illustrated
in Figure 12.
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Figure 12 The Magnus Force vector (Lieske, 1966).

Some research has been conducted to determine the value of the
coefficient and relates it to the length to diameter (L/D) ratio of
the body for low angle of attack and very smooth surfaces in
supersonic flight (Power, 1974). Since we are trying to determine
the effect of varying the roughness, this golution is not helpful
in the end, but may be used to determine a ballpark value of the
unperturbed coefficient. The results of this research are
reproduced in the figure on the following page.
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Figure 13 Angle of attack vs Magnus Force coefficient
(Power, 1974).

Although it is the Magnus force that results from the
roughness that we hope will ultimately cause instability, it is the
moment arm placement of this force on the body that causes the
torque about the center of mass. This is the contribution of the
Magnus moment. If the Magnus force does not pass directly through
the center of mass of the projectile, then a resulting Magnus
moment is produced. The magnitude of the moment is given as is
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the dimensionless coefficient of the moment. This coefficient is
approximated in McShane, et al. with a dependence upon the centerx
of mass location in the projectile (the location of the CM is on
the horizontal axis of Figure 14) (McShane, 1953).
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Aerodynamic Coefficients vs. Center of Mass Position
) Km = ordinate, K = ordinate X5
Ky = ordinate /10, Kg = - ordinate X10

Figure 14 Aerodynamic coefficients vs center of mass position
(McShane, 1954).

The Figure depicts firing data obtained for a 4.5 inch rocket
and although not precise for our purposes, it provides a general
idea of how the magnitude of the coefficients varies. The value of
the coefficient is read from the graph at the point where the
moments are applied in relation to the center of mass position).
For the 155mm projectile, the center of mass would be near the
number two on the axis of Figure 14. This gives a general idea of
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representative values for the Magnus moment if a Magnus force were
applied to the forward third of the projectile (e.g. a Magnus force
applied at position 4.5 would yield a Magnus moment coefficient
near zero) .

The value of the moment coefficient may be positive or
negative as the mean position of the force moves away from or
toward the center of mass. The hope is to achieve a roughness that
will produce a force with a different length moment arm from the
center of mass and thus produce a change in the Magnus moment
coefficient. The actual center of mass will not have changed, but
the position of the Magnus force relative to the center of mass
will have the effect of changing the center of mass for predicting
the Magnus moment coefficient with the above Figure. The Magnus
moment lies in the yaw plane and is perpendicular to X. The vector
[Zx (#x¥)] has magnitude vsind. The moment 1is depicted and
expressed in Figure 15.

It is hoped that inducing a Magnus moment by increasing
surface roughness would become a technologically feasible
possibility. If it becomes possible to use surgical precision (to
within centimeters) to produce a roughness at a desired location
from the center of mass, then the resulting torque would be changed
by the amount r X F, where r is the distance from the center of
mass and F is the magnitude of the Magnus force. Ultimately, then
the problem of defeating an incoming projectile could be achieved
with a calculated amount of energy directed toward a specific point
on the projectile with predictable results. This would be the most
efficient use of the proposed system.
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Figure 15 The Magnus moment (Lieske, 1966).

D. ESTIMATE OF REQUIRED CHANGE OF MAGNUS COEFFICIENT

The desired change in the Magnus moment coefficient can be
estimated by varying the values of the coefficient and plotting the
results as a function of S,, S;3. This is done in Figures 16 and
17 below. The first Figure shows how the terms have a polarizing
effect since they contain opposite signs in S,, S3. This is

desirable since any change in the value of the coefficient may
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cause an instability to result from either term. The second plot
is the product of S5, S, demonstrating the narrow region where
stability is satisfied (the region where the product is positive).
For typical values of the coefficient, a magnitude change by a

factor of five may be sufficient to cause instability.

MAGNUS MOMENT COEFFICIENT vs.STABILITY TERMS S2 and S3
1.5
{4
. 05{ | .- y 4. ...................... ______ Stabili&y —
§§ [ s2 | S3
8
n
ol | b
-0.5 | -
-1 * = T T
-0.5 0 05
Magnus Moment Coefficient

Figure 16 Stability factors vs Magnus moment coefficient value.
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Figure 17 The stability factor product produces a region of
stability for certain Magnus moment coefficients.

E. ESTIMATING YAW CHANGE VIA CHANGES IN THE MAGNUS MOMENT

The next set of calculations conducted to provide a theory for
instability are based on a point mass trajectory model developed by
the Ballistic Research Laboratory. The equations derived for this

model provide a simplified means to calculate the yaw of repose,
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a
yvaw angle along the trajectory. The goal of the BRL was to develop

e 1 @ dimensionless expression to quantify the effect of changing
a model that would incorporate the effects of yaw without the
computing time of a complex rigid body simulation. The estimate
was an intermediate step in achieving this goal. For this

discussion, @ _. is the desired term for examining a magnitude effect

of varying thz Magnus moment (Lieske, 1966).

_ If the results of this calculation demonstrate a dependence of
the yvaw of repose on the Magnus moment, then the stability argument
previously suggested is validated. The BRL found that the Ee term
was successful in matching empirical data when applied to equations
of motion that included yaw drag and lift. They did not apply this
term independently to varying conditions of the surface roughness
of the projectile.

In the development of the yaw of repose estimate, the BRL used
some notation that is not consistent with previous chapters. To
avoid confusion and define some new terms, a list of these symbols
is provided below (although Lieske et al., accounted for the
Coriolis force, it has been discounted by many other studies as

negligible and is ignored in this magnitude analysis as well):

Transverse moment of inertia

Acceleration due to gravity at ground level
Unit vector in the direction of ¥

p_ Drag force coefficient

Kp ~Yaw drag force coefficient
o

The same coordinate system previously introduced, a ground-
fixed right handed Cartesian system, will be used. The body is
still considered a solid of revolution and the unit vector X is
along the axis of symmetry pointing forward through the nose. The
magnitude of the angular velocity, N, is parallel to X and is
positive for a right-handed screw motion along X.

The following are the simultaneous differential equations of

motion for a spin stabilized projectile. First, for the center of
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mass:

Recall that the total angular momentum H can be expressed by:

H = ANR+B(RxX) . (3.8)

Therefore, the sum of the applied moments gives the vector

rate of change of the angular momentum:

H =ANZ+ANZ+B (%x %) =pd>K, v (9xX) -pd*K,v (RxX+pd K N[Zx (£xV] -pd*K,NVX .

(3.9)

Defining the yaw of repose from the rigid body system of

differential equations requires these assumptions:

1) The projectile can be represented sufficiently as a

body of revolution.
2) The projectile is dynamically stable.

3) The initial yaw 1s assumed to be small and has a

negligible effect on the trajectory.

In equations 3.7 and 3.9 the magnitude [Xx¥| is present in the

, - V .
lift and Magnus terms. If we let I=1;, then the magnitude
|#xT1=sind. Lieske, et al., then define the yaw of repose:

dest(XXf)=2—cos6f. (3.10)

This vector represents the vector yaw directed from I toward  and
is in the plane determined by I, . The effect on the trajectory

by &e will be small with the assumed conditions. Therefore,

is assumed negligible yielding the following approximations:
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% =cosdl, % =cosdl. (3.11)

Then, dividing the total angular momentum into parallel and

perpendicular components results in:

AN=-pd*K,Nv, ANX+B(XxX)=pd’K,v(9xX)-pd*K v(XxX) +pd*K N[Zx (Zx¥7)]. 3. 12

Then substituting x and its derivatives in 3.7 and 3.12 with

equations 3.10 and 3.11 will provide a solution:

-pd? (KDO+52KD¢) V2f+ pd’K, vid, pd3stcosﬁf+ pd K Nv
m m m

u:

(@,xD)+g. (3-13)

ANcosdF+Bcosd (a,xf) +Bcos?d (Ix1) =pd®K,v?(Ixd, ) +pd*KNv[cosd (&, +cosdI) -I] -pd*K,vcosd [ (&, +cosdT) x11.

Cross multiplying both sides of equations 3.13 with I and utilizing

the terms, f, 7 the vaw of repose becomes:

2 (-AK Ncosd (#x¥) +md*K Ncosd [ (&-g+pd*K,cosdV¥/m) | -K, [¥- (V-I) T] [2Bcos?d (*-I) -pd*K,cos*dv?] ]
° ’ [pd’K K v +pd*K K Ncosbv?+K, Beosd [ (v -(+9 11 ' ( 3.14 )

With the v term dominating the denominator, the last term can be
discarded, leaving a ratio of g;_ The middle term in the
denominator after K; can be consiééred approximately equal to g.
With some known behavior of artillery shells this further reduces

to a final form:

_ -AKN(9+D) +md KN (9 (d-g)] (3.15)

.ae

pd3KLKMV4+pd5KFKTN2V2

The next step 1s to use this equation to estimate the effects

of varying the K terms. ¥xv 1s estimated wusing the ideal
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. , . . . 2
trajectory, this is done by approximating ae=81n25. Then, 3.15

can be written:

0, = (@p-0y) (¥xd) ~ab(¥xg), (3.16)

such that, dez(aa-zab)(ﬁoxg). (3.17)

Now the useful form desired for sin26 can be written:

2

, 26 _ .2 2 2
sin = Vo9 (aa+4ab 4¢xaab) . (3.18)

For the mathematical analysis it is necessary to define the

terms oca, ocb.

AK[N
tat pd3 Kk Kyvtrpd Kk Ve
(3.19)
mK N
“p deLKMV4+pd3KFKTN2v2.

It is worth noting that again, both terms contain coefficients
for the Magnus moment. Using numerical values, and changing the
Magnus moment coefficient from 0.3 to 1.5, the solutions for the

equations 3.19 are:

3 3
9 secC abz4><10—8 sec )

£t £t 2

@y = 9x10

Thus the result for initial values of yaw will be:

2 -5 .2 -
dg = 1x10 = sin“o, d = /10x10

Similarly, if the Magnus moment is increased by a factor of five,

2
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then the results are:

a = 9x107%, wp~7x107, 2= 1x103, & = JT0x10 1,

This is an order of magnitude change! The theoretical evidence to
support instability with a five-fold magnitude increase in the
Magnus moment is established. These results although not linked
directly to the stability criteria support the argument that
instability can be achieved with a change in the Magnus moment.
Based on the stability equations, we expected instability to arise
by changing the Magnus moment. Here, we have changed the Magnus

moment and verified that the yaw angle will change considerably.
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F. WILL THE MAGNUS EFFECT CHANGE SUFFICIENTLY WITH
INCREASING THE SURFACE ROUGHNESS

A drawing of the projectile as viewed from the nose tip coming
out of the page will be helpful for estimating the magnitude of the
Magnus effect.

APt

V. =V v 2nr
L s period

-
<
]

Figure 1§ Laminar boundary layer - projectile front view.

The cross flow, v, , is approximately 50 m/s for a small yaw of
about five degrees. This is nearly equal to the velocity of the
boundary layer close to the projectile surface (laminar flow) which
is calculated to be 60 m/s. Applying the Bernoulli equation to the
unroughened laminar flow projectile surface leads to the following

analysis:

1 - 1 2 :
Pp + Ep"l = constant = P, + EPVJ_ (3.20)

where v =V, giving
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Py * 5PV, =Pt 5PV,
and P;=P,, szo leading to
= P +——pv
such that
1 2
APjaminar ® 3PV.
where
1 2
Fp= APjaminar = KF* 5PVy-
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Figure 19 Adding turbulence in the boundary layer.
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Adding a surface roughness, as in Figure 19, to the entire
body would cause the resultant velocity vector on the lower side to
decrease as fluid momentum from outside the boundary layer is drawn
into the boundary layer by turbulence. The velocity along the top
of the projectile will not change appreciably since the component
of cross wind velocity and the velocity of the boundary layer
(caused by the angular velocity of the spinning projectile) are
nearly equal. The result is a small change in the Magnus force
that will be estimated now.

For the projectile with a symmetric band of roughened surface,
the view from the nose shows how the turbulence draws the
surrounding flow into the boundary layer in the roughened region.
The turbulence transports fluid momentum across the boundary layer
and tends to bring the flow velocity closer to the surface. Notice
the turbulence does not change the profile of the velocity along
the top surface of the projectile.

The turbulent boundary layer is turbulent at a Reynolds
number,

pVpL

Rg®—3—

in a band around the projectile, using the full flow velocity
including the longitudinal component because it 1is the full
velocity at the boundary layer edge that determines the Reynolds

number.
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unchanged profile on top

Figure 20 Turbulent boundary layer - projectile front view.

Then comparing the equations in 3.20 results in the following:

1 -2 _ 12
Pyt 5PV =Po+ 5PV, (3.21)
T R | N
approximating Vl""ivl' then
1 2 1 2 1 3 2
Pz = PO"'EP(V-L —ZV'L) = PO+§sz.L
such that now,
3 .2 1 .2
APryrp = §PVLs = APjaminar APturb = ~gPVL-

This is a change from the laminar case by a reduction of about 25%
change in pressure and hence a similar change in force. But, this
is only applied to the band of roughness which for a laser induced

case, may only be one tenth of the length of the projectile. As a
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moment arm, this would represent 20% of the moment arm length.
Thus, applying a 25% decrease in Magnus force to only 20% of the
surface would result in about a 5% change in the Magnus moment.
This is not a significant enough effect to achieve the instability
we had hoped for via the Magnus moment.

If the roughness were applied to the entire surface, the net
result would only be a change in the Magnus force by a total
magnitude of about 25%. This is still far short of the five-fold
increase which is likely to cause an instability. There may be
additional non-linear factors that contribute to the Magnus effect
such as those described by the vortices that produce an additional
sideforce (Platou, 1956). The analysis applying this additional
component may still provide validity to the prospect of exploiting
the Magnus moment as a means to achieve instability, but is not
undertaken here.

The case of an asymmetric roughness does not present a uniform
force that could be applied to the Magnus effect analysis. In fact,
the asymmetry may only cause a wobble of the same proportions
derived above. The asymmetry may also appear symmetrical to the
Magnus effect if the spinning boundary layer creates a uniform
turbulence at high spin rates. However, it may create a moment

arm of drag which will be discussed later.
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IV. AERODYNAMIC DRAG AS A MODEL

The drag will be examined as the friction factor changes by a
factor of five; this value was not chosen arbitrarily, however the
analysis of the Magnus effects proved that a similar change in drag
would not result in an instability. As such, it is hoped that a
similar magnitude change in the drag will result in an additional
drag force sufficient to reduce the range of the projectile. Drag
will be examined separately to determine if the effects of drag
alone can prevent an incoming ballistic projectile from reaching
its target.

The model for the analysis will be a cylinder to approximate
a projectile. The flow through a cylinder has been, in particular,
very well studied. A pipe is a cylinder with internal flow that
approximates the flow behavior on the external surface as well. It
has been well established that increasing surface roughness in a
turbulent flow will have an effect on friction resistance. 1In this
case, for the projectile, the effect is on the aerodynamic drag
across the whole body. For the model, then, we want to increase
friction resistance by a substantial factor of three to five.

The friction resistance is due to the surface effect of
changing the boundary layer. By increasing surface roughness, the
sublayer will break up and become increasingly turbulent.

For the 155mm ballistic projectile a roughness value, €, of
.046mm (White, 1979) can be divided into the length (700 mm is used
as an estimate to account for the geometry) to enter Figure 21 for
friction with smooth and rough walls. With a value L of 15000
and using a typical Reynolds number, 107 for the projéétile, the
flow can be determined as past the transition point, but not fully
turbulent. Therefore, the condition of turbulence is met and an
increase in surface roughness should result in dramatic changes in
the drag. In the next section, the calculations will be made that
show the actual values of the Reynolds number and how the roughness

must vary to provide the necessary results.
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Figure 21 Reynolds number vs drag coefficient
(White, 1979).

A. AFERODYNAMIC DRAG ESTIMATES

The Reynolds number for our projectile must first be

estimated:

7

R =~%§-=2.6x10 (4.1)

€L
Then, entering Figure 21 with that result, and moving across
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the chart with the wvalue of

m|

= 15000 to determine the drag

n increase of more than three can

N

coefficient, gives Cp = .004.
be seen on this Figure using Cp =2 .013 resulting in an -é of
approximately 200. This results in a required roughness of 3.5 mm,
L
€ = —— =3.5mm 4.2
00 ( )
Similarly, if the drag coefficient is used as the measure to
determine a change in roughness required, it is possible to
calculate the coefficient by (White, 1979):
. 7
Kp = 03t _ 8 OO_ (4.3)
R 1/7 R
e °L
L
Using this result and multiplying it by five will again result in

a change of roughness L/€ on the order of several hundred and a
resulting roughness of several millimeters. This roughness can be
visualized as dimples covering the surface of the projectile that
are several millimeters deep and spaced so that no smooth surface
is larger than the diameter of those dimples. The number of
dimples required can be calculated using the area of the projectile
and a dimple size of 5 square centimeters to be approximately
162,000. This means that the laser must pulse that many times on
the incoming projectile. With a short pulse length on the order of
nanoseconds, this can be done in milliseconds. A longer pulge
length but no longer than microseconds will still allow sufficient
roughening in under a second. With the coning and spinning motion
of the projectile, a pulse rate somewhere in the middle will allow
for the most dispersion of pulses over the entire body.

Similarly, a continuous pulse laser may melt the surface
sufficiently in less than 1/2 second to cause the same effect. The
roughness does not need to be caused by dimples. It may be equally
effective to produce ridges of the same magnitude of solidified
molten flow produced by the laser energy for a roughening effect.

From the criteria for vaporization equation, an approximation
of the energy required can be made (Schriempf, 1974):
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- J
Ty = PAX(Cg(TyTo) +Ly,  Fotp = Ax(5600 sz): (4.4)

Fo

where Ax is the hole size or roughness desired. Substituting in
the Ax = 0.35 cm term results in the following requirement
(details are located in Appendix B):

F.T,=%2 - 5—52;.

o'p
cm2

The symmetry of the roughness does not significantly affect
the net force acting on the projectile. Because the projectile is
spinning and the roughness will be asymmetric over the entire body,
the turbulent boundary layer will spin with the projectile as the
cross wind interacts with the turbulence. In fact, an asymmetric
disturbance of several thousand holes around the circumference of
the spinning projectile will produce the largest increase in the
drag effect since the boundary layer and hence surface friction

will increase around the entire surface.
B. DRAG VS. RANGE ESTIMATE

The question remains, "how does this drag reduce the range of
the projectile?" To complete this estimate, the equations of
motion incorporating the drag will be used. The vertical drag will
be assumed negligible compared to the axial drag for ease of
estimation. This is probably a reasonable assumption anyway since
the projectile will be engaged close to its terminal point and the
altitude will be small compared to the range. Additionally, the
yaw as the projectile reaches its target may be at its maxima
providing additional 1lift to counter any vertical drag. This
assumption also allows a starting calculation for the time of
projectile flight which will be needed in the more detailed

equation of motion.
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1.2
Y=vy t-=gt”. 4.5
Yt 729 (4.5)

Using a firing angle of 45 degrees for the projectile to achieve
maximum range, the horizontal and vertical components of the
velocity are equal initially (VYO=VXO). The projectile 1is
calculated to have 79.5 seconds as a time of flight.

The equation of motion ‘used to determine range information is:

2

., _ . d \'4
X = mp(Y)

Us(Y)

XKp = -G(V) X. (4.6)

The functions that, in general, are dependent upon altitude will
also be considered constant for the estimate made here. Applying
the following steps to equation 4.6 results in a final form useful
for determining the range shortfall with an increase in drag:

u(t)

X=u, u-= —ua(v), In— = —5(v)t,
u(o)
u(t) = e WOEWIE L) = fe'G(V) tdt+Xo. @.7)
Finally, : v - v
X X
x(t) = - Oe_G(V) t+Xo, where X,= o,
G(v) G(v)
so that Vy _
x(t) = =—2(1 - e €ME
G(v)

Applying the final form of 4.7 to the projectile’s flight in
two steps will yield the desired results. First, by choosing a
point 2000 meters from the CBWS the projectile’s time of flight and
range up to that point can be calculated. Then, using that point
as the start of the engagement with a the new drag coefficient, the
range of the engagement leg of flight can be compared to the range
if the drag were not changed. The result, for our increase in drag
is a 20% reduction in range with the engagement starting at 2000 m.

From the launch of the projectile until 2000 meters away from
the target:
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d v .
-— p—ZXK
vXO o pqu pt
x(t) = 5 (L - e ) = 26,825m
d v o,
—p—XKp
m" ug

For the remaining 2000 meters of travel new velocities in both
the vertical and horizontal components must be applied in addition
to an increased drag coefficient (increased from .004 to .02). The

velocity will be calculated from:

where, G = .002283 for a drag factor of .004. This will give an
additional projectile range during the increased drag portion
(5 = .008121) of its flight path of only 1619 meters. The
projectile will fall short of the target by nearly 400 meters or 20
percent of the engagement distance. A twenty percent reduction in
range with an easily obtainable laser requirement is an encouraging

result!

C. YAW TORQUE CREATED BY A CHANGE IN ROUGHNESS

In the case where only one pulse or a series of pulses in
close proximity roughen the surface of a projectile in a small area
asymmetrically, there will be a torque induced that will produce an
increase in yaw with the same frequency as the spinning projectile.
Depending on the existing yaw angle and the cone rate, this torque
may cause tricyclic motion of the projectile.

If the asymmetry is out of phase with the cone rate, it will
cause a coning motion within the larger coning motion, thus a
tricyclic motion as in Figure 22. This will almost always be the

case. There will be points in the tricyclic motion where the yaws
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Iresult

Figure 22 Asymmetric roughening causes tricyclic motion.

are complimentary and result in a larger yaw and points where the
yaw motions cancel. The effects of this complex motion are
difficult to describe and would vary in almost every case.

With this in mind, the projectile will be assumed to have zero
cone for this calculation initially. This will enable a
calculation of the contribution of the roughness independent of the
other forces.

pividing the drag force into compohents, the component along
the axis will cause a yaw to develop. The torque created by this
force is solved by the following equations:

T = §xF = |1d! | Flsind (4.9)
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1d1 1 Flsin(180-Y)
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=~ r'F, where r=7cm= R.

Figure 23 Asymmetric drag.

An equivalent expression is then used to solve the equation in
terms of flight time remaining to the target, At. The change in
angular momentum is related to a change of yaw angle that is chosen
large enough to increase drag sufficiently to miss the target. The
result is expressed below as a sequence of steps assuming there are
three seconds of flight time remaining:

Fr = = , here Lo =
At At v S

'_l

MRz. (4.10)

2

This results in a required force of approximately 300 Nt. But,
this is not a useful number unless we can attain it with our
estimated roughening that increased drag by a factor of five. For
this,

1 2. N ~
F = -z—pu CDAr so AF = "z'pu (ACD)A = 35 Nt. (411)

This result is an order of magnitude less than the 300 Nt required.
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V. CONCLUSIONS AND RECOMMENDATIONS

The stated goal of attaining a system that will perform the
requirements set forth in the Defense Planning Guide is within the
realm of physical possibilities. The use of directed energy may be
a viable solution to the problem of defeating an incoming spinning
ballistic projectile.

The following potential mechanisms were investigated with
available theoretical models and quantitative estimates were made
with the following results:

(1) Impulse transfer of momentum of 10% of the projectile
momentum by laser ablation: The allowable laser energy fluences
before laser absorption waves will decouple the laser from the
target are orders of magnitude too small to achieve the required
lateral momentum change.

(2) Impulse angular momentum change by laser impulse to
increase the yaw angle significantly to induce large drag: Because
of the limitation of laser pulse energy by the absorption wave
threshold, it would require multiple sub-nano second multi-gigawatt

pulses to achieve significant angular momentum changes.

(3) The stability of the projectile and its dependence on
various aerodynamic coefficients was investigated using a well
known stability model. The Magnus force and Magnus moment were
identified as the most 1likely candidates for affecting
destabilization by a five fold increase of the Magnus force. It
was shown that such an increase would indeed lead to a significant
change in the yaw. However, a simple analysis of the effect of
surface roughening by a factor of 3-5 by laser melting or dimpling
leads only to a 25% change in the Magnus force because the
turbulence tends to wash out the pressure differential between the
top and bottom of the projectile.
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(4) The effect of increasing aerodynamic drag by laser
roughening of the projectile surface was investigated. It was
found that a 3-5 fold increase of surface roughness (drag) would
require fluences of 2-5 Kilojoules per square centimeter and that
the effect of the increased drag could lead to a 20% decrease in

the projectile range over the last 2000 meters.

(5) Creation of a vyaw increasing torque by a single
asymmetric high roughness laser melting spot on the projectile was
investigated and it was found that with a fivefold increase of
roughness on a 10 square centimeter spot, the torque is too small
to cause significant yaw increase and subsequent drag increase and

range reduction in the time available for engagement.

The aerodynamic drag was certain to increase regardless of the
Magnus effects when the surface of the projectile was roughened.
The result although not dramatic emphasizes the viability of using
a directed energy CBWS as a means to achieve a "kill" of an
incoming enemy projectile. If the target of the projectile were a
ship, then the range reduction would certainly be sufficient. For
land targets, the decrease in range may pose other problems in a
congested or civil warfighting environment.

The system requirements may be of a scope that is entirely
different in nature. It is necessary to develop a system that is
capable of tracking a projectile for ranges of several hundred
meters during an engagement. This must be done with an accuracy of
centimeters. The system must also be capable of determining the
exact location of the projectile relative to the projectile’s
intended target. It would not serve its purpose to engage a
ballistic projectile that was certain to overshoot its aim point if
doing so would cause it to fall short and on target. These are
just some of the system problems that will require addressing
before a suitable CBWS could be built.

The energy requirements for the laser to induce sufficient
drag are well within the bounds of current technology. In that
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light, it is advisable to find an experimental means of validating
these findings. There may be some interest in determining exactly
how deep the laser effects will penetrate or what size melt ridges
will develop on the ballistic projectile surface when atmospheric
disturbances have reduced the effectiveness of the laser. A sea
environment in particular, may have a deleterious effect on the
directed energy against a relatively low flying target such as a
terminal ballistic projectile.

Other recommendations for research include a more detailed
look into the drag behavior on a projectile. The model of a flat
cylinder does not take into account such things as the point where
the shock wave detachegs from the body. There may be other unigue
aerodynamic behaviors with various projectile body shapes that
would require significantly more or less roughening to achieve the
desired results.

Finally, one last attempt to exploit the Magnus effects is
worth the effort. The nonlinear effects of the vortices shedding
may be sufficient to produce the desired instability. It may be
more desirable to pursue the use of a kinetic energy vehicle to
cause a change in the center of mass location such that the Magnus
moment causes instability. This would likely be a solution that
would provide a much larger safety margin of destruction from the
projectile’s intended target.
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APPENDIX A

Aerodynamic Forces Acting on the Projectile Preliminaries:

=i

center of pressure

n

CP

resulting aerodynamic force

x
n

R

Figure 24 A single resultant
force on the projectile.
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For this introduction into the stability a preliminary model
will be used to define some of the most basic motions and forces
acting on the projectile. The projectile in the Figure above is
rotationally symmetric with velocity, 4 , with respect to the air
and an angular velocity, ®, equal to zero. The terms of this

Figure are defined below:

M = Overturning moment = component of T along the Z-axis
D = Axial Drag = component of R along the X-axis
[ = Lift Force = component of R along the Y-axis

M, D, and L depend on the yaw, &, by:

L=Xsind X, m are independent of
M=msindcosd

D=pu2d2KD, L=pu2d2KLsin6, M=pu2d3KMsin6cosﬁ
X=pu2d2KLL m=pu2d3KM

D, m, and x are all functions of the projectile shape,
diameter, velocity, sound speed and density.

Y

X X

F G ////7j;; 1
& a - T a

X

Figure 25 The forces and
coordinates.
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Since it is desirable to have the projectile travel with some
vaw, it is necessary to impart a stabilizing spin. This will lead
to a complete description of the forces acting on the projectile by
reducing the aerodynamic forces to a finite number of coefficients.
These have been verified experimentally within a satisfactory
degree of accuracy for describing the motion of the projectile with
a small yaw.

F(®,U) = net aerodynamic forces acting at the center of mass, CM.
G(w,u
21 ,22 ,23 = unit vectors fixed to the projectile.

vy

) = net torque due to aerodynamic moments.

Then solving for F; and G; is done with a Taylor expansion
about the unyawed position. The coefficients of the expansion are
independent of 4 and @ to the first order. Adding s, the angle
of rotational symmetry between zero and pi, the complex numbers,
E=uy+iug | N=0,+iw, where u2=%(E+E); u3=%i(E—E), become
necessary. . Linear functiqu of uy,u3,w,, W53 can be written as

linear functions of £,E,m,n. The Taylor expansion then becomes:

F1=al +blE+b2n+ Blz"' Ezﬁ-

F=Fy+iFy=ay +ciE+con+dE+dyn

The coefficients except a are in general complex and the special

form of F is necessary because it must be real for all values of

59




£.,n. Rotating the vectors ®; ,%, , %3 through the angle s about the
axis of symmetry changes the axis system to R R ”ﬁé and the
following transformations take place, E-FE e, n-1 §1%, E-Fel®
q7-7e°, F)~F;, and &~ F e 15. Because of the symmetry, such
a rotation cannot change the coefficients in equations A.l1l. The

resulting equations are:

-is -is, 1 is, ¢ ~.18
Fl=a1 +b15 e +b2n e + blEe + b2T|8

F e-ls=a2 +cq & e-ls+c2n e-ls+dlfé ls+d2'rTe 15

Comparing equations A.l and A.2, the terms on the right from before
and after the transformation can be set equal in Fq for all &, n.
Choose 1=0, = By - 2b; b,=2b; bicoss, coss#l ~ b;=0, similarly b,=0.
Using the same equations to compare &, the d terms can be examined
the same way and they result in coefficient values of zero as well.
Similar arguments can be made for the components of G. The result
is that if a projectile is symmetric about its axis of rotation,

its force and momentum system can be written to a first order

approximation:
Fl=al g=F2+iF3 =C]-E+C2n
(A.3)
G1=el g=G2+iG3 =C3E+C4n
where a;,e,Cq...Cy are functions of density, shape, velocity,

angular velocity, and wind speed and are independent of the
orientation of the axes %; ,®; ,%; with respect to the body. One
can further show that if the projectile has a plane of mirror
symmetry, then in A.3 the terms Fl,Stcl,91C4,$cz,$c3 are even
functions of ®; and 3’,mc2,$c3,$c1,3c4 are odd functions.
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The resulting dimensionless form

coefficients are:

C, =- d2 Ky + 1 d3w K
1=7PA UK+ 1p 14F

C, = d4m K +; d3 K

2=P 1Kxp*1Pa U Kg

c, =-pdiu.Ky+ipd w. K

4 =7PAd U Kp*1p 18xT
_ 2 2

Fy=-pd-u; Kpy

_ 4
Gl——pd ulKA.

The K’'s are all even functions of W, and of

of the force and moment

@
-g, d—— . The signs

are chosen so that for a typical projectile all coeff1c1ents would

be positive (for most shells, Ko is negative).

The forces and moments are then summarized as:

pdzulKNE The Normal Force
ipd3m1KFE The Magnus Force

4
pd W, Ky
, 3
ipdTuKgn
pd4w1KTE The Magnus Moment
ipd3ulKME Over Turning Moment
pd4u1KH Damping Moment

or Yawing Moment
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cross force due to cross
velocity.
Magnus cross force due to

cross velocity.

Magnus cross force due to
cross spin.

Cross force due to cross
spin.

Magnus cross torque due to
cross velocity.

cross torque due to cross
velocity.

cross torque due to cross

spin




ipdsoyLKXT Magnus cross torque due to
cross spin.

2 .
pdzuleA Axial Drag
pd4ulleA Spin Decelerating Moment

The force R has been resolved into forces along and
perpendicular to the projectile instead of 4. Taking into account
the yvaw, 0, the normal force becomes pdz(ucosﬁ)KN(usiné), and the
2
)

axial drag becomes pdz(ucosé Kpa - Computing these with

components along and perpendicular to the velocity vector gives:

pdzuzKisinﬁ=pd2u2KNsin6c0526—pdzuzKDAsinﬁcoszﬁ

(A.5)
pd2u2KD=pd2uZKNsin25c0s5+pd2uszAcos35.
A comparison then gives:
K,=K 25-x 25
1,=K)cos DACOS
(A.6)
Kn=Kpsin2d 0+K 38
p=KnSin~ocos DACOS
which to a first order approximation (06<«1) is:

While the moment term, Ky, remains identical to the one previously
introduced.
The general equation of motion for a symmetrical projectile

has four assumptions:
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1) A fixed earth three dimensional coordinate system (X, Y, Z)

neglects the Coriolis force.

2) Values such as density that change with altitude are

assumed constant.

3) There is no wind velocity.

4) The projectile has an angle, s, between zero and pi of

rotational symmetry and a plane of mirror symmetry.

The velocity vector, angular velocity vector and projectile
fixed coordinate system remain the same for the notation of this
section. Equations A.3 represent the Aerodynamic force and the
Aerodynamic torque, respectively. A unit vector parallel to the
vertical axis 1in the earth fixed system 1s defined to be
Yy *'T=Y2+iY3 and the acceleration due to gravity transforms
—gYi-»—gT. The remaining terms to introduce are: the moment of
inertia about the axis of the projectile, A; the moment of inertia
about any axis perpendicular to the projectile axis through the
center of mass, B; and the mass of the projectile, m.

The general equation of motion is:

2 (m, @) =F-mgy.
dt (A.8)

The angular momentum equation in the projectile coordinate

system is given by:

2 =202, +Bw2R, +BW3R3 = (A-B) @, R +BB

(A.9)
and 2.5, L{a-p) e, 2 +s0t=G.
de ' dt 171
The time derivative of vector P is expressed in the projectile
system where P transforms, ﬁ-*{Pl;P==P2+iP3}. Using index
notation, B=P;®; and P=Pj2j+ij. The vectors %5 are fixed in

the projectile.

P=Pj2j+Pj®x2j
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(A.10)

In components, the first one becomes:

B2, =By + [ (Py+iPy) (0y-03) - (Py=iP3) (@y+iw3)] 5 =Py +(PA-Pn) .

(A.11)
The second and third added together with the third multiplied by 1

becomes:

So, the equation of motion in projectile based coordinates are:
. - = i
mlu, - (En-En) 51 =F)-mg;
m[E_iuln+ile] =.7—mgT=ClE+C2ﬂ-mgT. (A.13)

And, the equations for the angular momentum are:

d —
— (a-B) @, 2, +B% = C. (A.14)

The above lema on the time derivative gives:

A (0,2)] = { 01+ (07T-00) & = &y

dt '
{ 0 -imym + 0 =-104M and




d , = i_ .
0] = (a3 =0
{n -ion +ion =1.

With this we have the two equations:

(A.15)
(A-B) (-iwqM) + BN =& = C3§ + Cyn

The differential equation for a change in the force of gravity in
the projectile frame is given by assuming ¥ = constant, Y = 0 in the
lab frame and applyving the lema:
d ., , - & 1
Yl = (Tn—Tn)—z- (A.16)
{ T-iyjn + ieY.

There is however an altitude dependence on the speed of sound
and the density. The altitude change of the projectile must be
tracked in order to insert the correct p(Y), a(Y)values. If d has
a component Y in altitude direction then its altitude change is

given by:

. SN 1 Y E
VY =0V = ulYl + uzyz + u3Y3 = ulY1 + —Z—(ET + ET) . (A.17)

The normal equation of motion is then derived. Again, several
simplifications are introduced to get an approximate trajectory
before making corrections:

1) The projectile axis is tangent to the trajectory.

2) The only forces acting on the projectile are drag and

gravity.

3) The variables affected by altitude are considered constant.

4) There is no wind.

The projectile will remain in the vertical plane of the initial

velocity vector as indicated by Figure 26.
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Figure 26 The drag opposes the motion.

_ 22 2 42.52 oa_ .2 2, @ a4
D =pd"u“Kp, u = X“+y“, D= -pd-u KDE' Fg-—
The equations of motion are then:
. 2 .
mi = -pD uKDu-mg?
with components:
5 2 . 5 _ 2 .

mX = -pd~uKpX, mY = -pd uKpY - mg

where Kp = Kp(=), u’ - x2+v2, p=p(v), a=a(y).  Most

-¥mg

(A.18)

(A.19)

exterior

ballistics involves the precise integration of equations A.19.
The

and

and

standard form of a normal solution is given by:

X = ucosf, Y = usinf
% = tucos® - usin® § , ¥ = usin® + ucosB B, so that
mucos® - musin@ B==-pd2Kbu2cos6

2

musin® + mucosO 0 = -pd KDuzsinB-mg.

(A.20)

Multiplying the third and fourth equations above by cos and sin

respectively, then adding the result gives:
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mu==_pd2KDu2-—mgsin9. (A.21)

Similarly, multiplying by sin and cos respectively then subtracting

gives:

0 = -Zcosh (A.22)

To the above equations A.21 and A.22 the following terms are
added: p=p (¥), a=a(Y), KD=KD(—§) .

Next, the angular motion of the projectile will be discussed
starting with the simplification of the equation of motion,

equations A.13 and the following:

B + (B-A)iwn =&
v, = (7 —Tn)% (A.23)

. 1,2 =

Y=uy + 5 (Y + £Y)
where & = € + Cyn, &€ = C3E + C4n, and the values C;...C4, Fy, G
in terms of the aerodynamic coefficients are given.

3 Changing the notation somewhat to include a density factor,
p—Er, is necessary. The density factor is applied to 5 the
aerodynamic coefficient to result in J terms, J, = p—;r§P°
Further, we will define the spin per caliber travel as:Vv = wl7r—.

The coefficients then b%come:

. 1
Cl = ("‘JN + lVJF)m?
C2 = (VJKF + iJs)mul

Gl = “JAVUlm.
Then use approximation by means of the normal equation of

motion. Let the center of mass motion be governed by the normal

equation of motion:
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K J

u = —pd2u2——2 - gsinf = —u2-—-12 - gsinB
m d
6 = —gcosg- (A.25)
u
X = ucos9, Y = usinB.
The solution is assumed to be known and satisfies
U2

U= _JD—ET - gsinf. . (A.26)

Next, we will conduct a change of independent variables

starting in the yaw equations. First replace:

oo Mae -
0

Y (A.27)
3 (d)dt.

Ot

This is then the arc length along the trajectory in calibers. The
equations determining the yaw motion will become essentially
independent of the size of projectile. A large projectile has the

same period of yaw measured in calibers of travel as a small model.

) = = _.g = ,E
(Q) = —/=— 3 Q 5 (A.28)

The trajectory normal equations are then:

, .0 . 0
U’ = -JpU - gdsin, 07 = -gdcosE-z—. (A.29)

The equation for the derivative of the angular velocity becomes:

dG J 2
o _ 1 AU ) _ U _ U
A(x)l - Gl - ml - TCJT - -de———-—U— Wlth (&)l - ‘av, @ =V E +
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J
v __. U , A% 2 A .

+ —U = -dvmI,— , V' = -=U" - d°vm— resultin
d A7 U 2 g

re

alg

Therefore, \Y
in:

J

A
v’ = -—2mg?
A

+ VJp + vgdU—zsinB. (A.30)

To change dependent variables the variables, £, 7, Yl,'r are

changed as follows:

P P
ifvdp ifvdp
A = ée 0 Bo= n—qe 0
U U
p
ifvdp
Y = gYe 0 g, = gY; .

-% is the vector yaw which has the magnitude of the sine of the

angle of yaw. The factor
p t
elifvdp] = elifw,dt]
0 0

changes the coordinate system from 21,.22,.23 which rotates with
the projectile to one that does not rotate about the £, -axis.

The quantity, A, is the complex yaw measured from the axis of
the projectile to the trajectory on a coordinate system with one
axis along the projectile axis and which is not spinning about the
axis. Similarly, W, Y, g, have interpretations. The coordinate
system thus described is determined when we fix the direction of
25

The aerodynamic force perpendicular to the projectile axis is,

F = (-Jy+ ivdp) mU—g + (Vigp + 1Jg) mUn

and in the non-rotating system the lateral force is this quantity

multiplied by
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P
ifvdp
e 0 - 57(1). This equation then becomes

: A ;
y(l) = (-Ty + leF)mUz_d + (VT gp + J_JS)mUZ%. (A.31)

The component of drag in the plane perpendicular to the
projectile is due to an aerodynamic force acting on the projectile
with the complex number representation, 57(1), together with that

7 7

component of the axial drag which is in the £,7"-23 plane. This

component is AJDUZI—;.. The aerodynamic force perpendicular to the
projectile has the cbmplex number §epresentation described
by: [(Jp —th4-ivaJk + (VIgp + iJSu)]ml%r. The real axis 1is
perpendicular to the trajectory pointing downward and the imaginary
axis is horizontal pointing to the left. The quantities A and M
are the cross velocities divided by the axial velocity U and the
cross angular velocity multiplied by d/U.

The final form of the equation is then obtained. For the sake
of abbreviation, the term p
fvdp = (. Making the same transforma-
0

tions for E, 1, T:

£ = E'E = (AUe -i(p) a zsinB)U—iyAU]e_i(pE
d

5 = [AU+A (-Jp-gdU "~

Q.

2
- -1 .32
= (A7-ivA-A(Tprgdu 2sing) ] Lo 71O (A-32)
Similarly,
(A.33)
_ ;s -2 . U2 -1Q
N = [u-iyp-p(Jp+gdu s1n9)]-—2e
d
_ ;o U _-i@
and ¢gT = (y —1vy)—ae . (A.34)

These are now inserted into equations A.23 leading to the following
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equations:

p -2 . - d _ig_ d 1 d
m[A“-A(Jp+gdU s1n9)—1u]—(ClE+C2n—mgT)E;Ee —Clk—ajczp,—l}—my—l;5
-2 a2 d

B[p -p(Jp+gdu 31n9)]—1AVp=C3A—IF+C4u7} (A.35)
;. , - - 1
Y =1gK, g1 "= (YR-YH) 5.
Substituting in the constants Cp...Cy, Gy, —jiiskz (the transverse
md

radius of gyration in calibers) gives:

)L’=(JD—J'I\frivJF&gdU—2sinﬂ)A+(vJXF+iJS+i)u—ydU_2

. , -2 -2 . -2 -2 . ..V
=(-VJT - \ —=
p=(-VIp-idp) Ak “+(Jp-k “JTy+ivk “JTyr+gdU “sinf+ia—)pu

Y “=1igu, gy = (YR-Y@) = . . (A.36)

Finally, the solution of the equation of motion will be
completed by using some approximations which will simplify
equations A.36:

1) Each J-term contains a density factor that is very small in

magnitude, on the order of 10_4.
2) A/B will be approximately 1/10.
3) As with the density factor, —gg<10_3.

4) Derivatives of the J-terms ard negligible.

The equations A.36 will be abbreviated as follows:
A7 = all+a2u+b
B = azA+a,u (A.37)
with the constants equal to:
a=Jp-dN*iVJIg
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a3“<_VJTtéJM)k " 2
a,=(Jp~k “Jy+gdU sin6+i—}§v)

b=(ghsinb-y)du 2.

Next, we will eliminate B from equations A.37 by substituting

the first into the second eguation:

A77+A T (-a, - —a2 Y +A (@ a,-a-a-+a %2 ‘-a ’)+b(az “+a —b’)—o
1545—2 1947929371 T4 a, 47T

To dea%iwith the derivative term a,”, recall equation A.30. The
terms - al’ are of the order of J2, whereas the other terms in
the coef%icients are of the order of J. So, they can be neglected.

The result is:

A7 +A 7 (~ay-a,) *A(a a4 -ajas) +b(a4——g ") =0. (A.38)

The solution of the homogeneous part of A.38 is done with a
change of variable to eliminate the first derivative term (the

particular solution will be addressed later):

P
1
Ef(al+a4) dp

A~ ge (A.39)

From this equation, the two derivatives l’=[q'+%%al+a4)q]ea and
rard rard ré 1 2 1 Ve

A =lq +(a1+a4)q fz(al+a4) qka(al+a4) q]ea are found.

Substituting these into A.38 gives:

I,—rz = 0
d g (A.40)

where r2

1 2 A1 .
-2 [ag+ay) *-a(agag-aya;) -2 (ag +ag)] = [ (a1 -ay) “+4apa3-2 (a3 +a,) ] .
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To find the approximate solution of equation A.40, let

Ve 1 4 rd 1 7 77 4
Z=(lnqg) "=—q”; 2 =——j§q 2,4 =—Zz+r2. Then, Z +Zz—r2=0. If r

were constant then tHe equation would have a solution Z=#r. r2 is
not really constant because of the v in the a;...a, terms, but r

is nearly constant which allows a trial solution of Z=r+€,e<r. It
2

7

s e I 7 ' ’
follows € +2re+62+r =0. Let =—§? then neglecting € €
quantities satisfies the equation approximately. The error is of
the order (e’+ez)/r2. The solution is then:

I Ve
ZRIT o7
and hence,
pP r -
{(I-EE ) dp
g=e . (A.41)
Using the other sign in Z=%r,
P
r - (A.42)
- )+
g[ = )tzrldp

g=e

Solving for A, we also expect two solutions:

P

4 A.43
f[al+a4~§ ) /2+r]dp | !
0

A=e¢e

Now, to express the coefficients in A.43 in terms of aerodynamic
coefficients, the coefficients a+a, from A.37 can be summed and
also substituted into the value of 4r“found in A.40. The result

is aided by using A.30 and yields:

2 2 ,
2_ .2V -2 -2 md 21Av
4I "'"A ?"'41( JM+ [JN_JD_'k JH—(ZJT—JA)T] B . (A‘44)

Several specialty terms are required to complete the
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computation of The stability factor,

HIR

2.2
S=——é—£%—— and
4Bk “Jy
1
o= J:ng as well as (A.45)
2.2 2
R(4r2)=_filgil__
B
II

Neglecting the imaginary part, if is computed precisely, then
the denominator multiplied by its conjugate complex with a
magnitude comparison leads to the same result as if neglecting the

imaginary part of 4r2 (except for r<<l which is a special case not

discussed) .
2 2 2 2
4 ’ vie©)” v’ o’ -2 . ‘ A.46
£ = (4r )2 = ( 2 )2 = v +—0- = JD_JA mi +gdU 2Sln6+ o . ( )
r 2(4r”) 2v-o o

The yawing motion is then a combination of the two solutions:

1
1 -2 md® ., A A? , -2 md®, 2iva, 3
ol Zo 2 Wy ay kIt Ty g AV B2 m VAR Iy pn kT (39,70 S ) =) Tlde (A.47)
= e

o—g

o

An approximation for the solution of a stable projectile is
2

such that the ratio of the imaginary and real parts of r 2<é% for
. r
stable projectiles. Using the binomial theorem to express the
sqguare root,

2 A -2 md2

In that case, near stability the vyaw motion is given by a

combination of the two solutions:
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P 2 2 .
1 I md -2 _ md iVvA
A= 0063[“% Ty k 3yt ) Iy 3pmk - (20,70, ) o+ g (1200 1 dp (A.49)
o .

This was the form that was used at Aberdeen Proving Grounds for
reduction of data. An alternate form for a stable projectile can

be written as follows:

r’_(4r2)’=_A2vv’(_a2v202
r

2 (ar?) B2 B2

2
)=(JD—JA—mZ ) /62, (A.50)

and then using equations A.43, A.44, and A.48 leads to: (A.51)

P J 2
2 [(29,-0,-K20,+gdU ™25 100~ (3, -md? S +9d0 23108) /0% [9,-0,-k 20,-20;-0,) 21 /0 + Liva(120) B) ) dp
e 0

The criteria for stability can now be adequately discussed. A
projectile is deemed to be stable if small disturbances have no
permanent effect, that is, if the yawing motion does not, in the
limit, depend on the initial yaw and the initial yawing motion.
The yawing motion of a projectile is given as a linear combination
of the two solutions of A.43 plus a particular solution, Ap so that
A=L1A1+L212+Ap.

The projectile is stable if Al' Az decrease in magnitude so
that in the limit only the particular solution Ap remains (it
becomes independent of the other terms). The particular solution
need not be.small though, for a large spin, the rate of precession
is small, and the direction of its axis will change slowly. Since
the trajectory curves downward after the apex of flight, the yaw
will become larger. The question then becomes, "what are the

necessary and sufficient conditions that the solutions given by
A.47 approach zero as the arc length, p, increases?" One can see
that the yaw will decrease if and only if the real part of the
first bracket under the integral is negative and in absolute value

greater than the real part of the second.
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Let 2
-2 md
a=(_JD+JN+k JH_JAT) ’
2.2
b=-2 Y .4k7?g,, (A.52)
2
B
A -2 md2
1
2
ldp

P
—jz'—f[(—a+iv%)i(b+ic)
A: Ee 0
[0)

The condition of stability is: a>0

a>IR/b+icl.

Reformulating the stability criterion b+ic=Vb2+c2(cos¢+isin¢)

where cosé= and siné-= < . From De Moivre'’'s theorem:
p2+c? p2+c?
|R/BIc! =4yb2+c? —;-(1+——b——2>=J%(b+ b2+c?). (A.53)
2
b~ +c

So that the stability criteria become:

a>J-%(b+yb2+c2)

where
—a;R(a1+a4)

b=Rar?

c=Im 41’2 .

Additional steps are taken in reformulating the stability

criteria in terms of aerodynamic coefficients:
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a® > %(b+\/b2+c2), a>0
- 2a2 > b+\/b2+c2, a>o
- 2a2—b > \/b2+c2, a>0

- (2a2—b)2 > b2+c2, a>o
- 4a4—4a2b > cz, a>0
- -4a2b > c2—4a4, a>o
5 2
and finally, - -b> -a™+ 5 a»o. (A.54)
4a
2 2 c2 2
Noting that a” is of the order of J” and Ta is of the order
2 2 2 2
A sz =Y >J, b~ A—vz > J, therefore, the a’s can be
BZ J?" 100 B2

neglected. Let

2 md2 A

_ A 2 -2 _SA. 1 =2 _ _ - .
b = ——B—Z-v tak “Jpy, and ¢ = 2oV [Iy~Jpmk "Iy (20pmTp) ——1=25 v f
such that now we can rewrite inequality A.54 as
A .2 -
f22v 2,72
A2v2—4k—2J > 5" a = 1- B K JM> £2
2 y> ——— =
BZ 4 aszz a2 (A.55)
. 4B%k 7%
Recalling the stability factor, S, E’E_—_E_Z_— allows the
following steps: 5 AV
_ -2 md® . _
a"(—JD+JN+k JH JAT)—Sl
2 md2 2 md2

a+f=(-Jq+Iy*k “JTy=Jp +(Ty~Tp~k “Tg=(200-J4) TESZ

77




Fe (T ot Ttk "2 md2_ Tk 2g - _ md2=
These terms S;, S,, Sy are very important to the rest of the

discussion of stability. The final criteria for stability is:

1 52.53, s, >0 (A.56)
S Sl
where Sy = Jytk _ZJH—JD—JA—I%Z,
Sy = 2JN-2JD—2JT—I—HZ—2-, (A.57)
and Sy = 2k gy (20p-20,) %ﬁ.

Using the relationships between the S terms and £, the

stability criteria can be rewritten,

S2 Sz 52
§> — = fl 7 = L -1, spo.
_5_5
lP 1 "
[ (-8, +i2k 7 [7S) £yB+3c] dp
Then, A«e 0 5 5 2
-2 A 2 -2 AV -2
where b=4k “Jy-——5V =4k Iyll-——s———) = 4Kk Ty (1-5)
2 2, -2
B 4Bk JM

A -2
c=22v-f = 24k “Ty /S £

and because S$>0, it follows that S>1 from A.58. This 1s the
"classical stability condition." This is not sufficient though.

E - one VP

The general motion for

with the two solutions for A represents the superposition of the
two cyclic motions, each decreasing in amplitude. This is the

epicyclic motion caused by the coning and spinning simultaneously.
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For S values around 1.5, the epicyclic yawing motion will have many
maxima. The successive values of the yvaw at maxima may increase
without bound.

If the classical condition for stability is not met (S<1),
then the final step of the inequality A.58 can not be satisfied.
The vaw will grow steadily and the motion is similar to the falling
motion of a top as the spin becomes too small.

It would be difficult to meet the condition S$;<0 since the
terms Jy, Jy* 10dp. If Jg < 0, then this condition could be met,
but this 1s unlikely to happen since it would require a shift of
the center of mass, which for our purposes is not practical.

Finally, the stability found in the product of the Sy, S3

terms may be sufficient to cause instability. Recall that:

2 2 S S
< < 1—ji— for S1>0, F could become > 1. —i%=1+—fi, —;i=1-—51.
S 2 2 Sy S S, S1
Sy 51

This would happen if either of the S, S5 terms become negative.
But, because S,+S3=2S;, S,+S3>0, always. Depending on the sign of
the Magnus moment coefficient, Jp, a change in magnitude could
cause either S term to become negative and result in an unstable

projectile.
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APPENDIX B

The laser melting of a projectile surface is the alternative
to multiple pulse dimples. To heat the surface to a depth of

greater than 3 mm, the surface temperature profile will appear as

in Figure 29 below. I —

temperature

Tsn

depth

The melting temperature at a depth for steel is related to the

surface temperature by:

T

S — —
Ty = < - 1450 C, Tg = 3900 C. (B.1)

The heat diffusion thickness is:

2
cm 2
€ = s/ktp, where Ksteel"o'os‘j;" tp = (=)

= 0.45 secC.

Rl

€
2
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The required heat is best deposited in a time, tg < tp. The
average temperature to which the material must be raised is
estimated to be:

T 4T
T=—M—2—E = 2700 C. (B.2)

This gives a required fluence of:

= 2

For continuous laser illumination with a sufficiently large
burn spot (radius 30 cm) on a projectile rotating with a period of
4 milliseconds, an equal distribution of the fluence is achieved.

The absorptance of steel is approximately 30% (Schriempf,
1974) . This means that for a laser intensity, Iy, the fluence

becomes:

= . . —_— 2
Fotg=tg0.3Ip = 4.7KJ/cm”™. (B.4)

This gives a required laser energy of:

E _ . 4700 2
> = 2x 0 .3 J/Cm ’ (B.5)

nr

where the factor 2 takes into account the energy required on both
sides of the projectile and the factor 0.3 accounts for the
reflectance. The result of solving equation B.5 for the energy is
nearly 90 megajoules required. For a tg< 0.45 secC, this
corresponds to a laser power of 200 megawatts.

If the burn spot is reduced to an 8 centimeter radius and it
is assumed the laser energy is moved over the projectile body, then
substituting values into equation B.5 results in an energy

requirement of only 6 megajoules and a power of 14 megawatts.
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